On double Hurwitz numbers with completed cycles

نویسندگان

  • S. Shadrin
  • L. Spitz
  • D. Zvonkine
چکیده

Abstract. In this paper, we collect a number of facts about double Hurwitz numbers, where the simple branch points are replaced by their more general analogues — completed (r + 1)-cycles. In particular, we give a geometric interpretation of these generalised Hurwitz numbers and derive a cut-and-join operator for completed (r+1)-cycles. We also prove a strong piecewise polynomiality property in the sense of Goulden-Jackson-Vakil. In addition, we propose a conjectural ELSV/GJV-type formula, that is, an expression in terms of some intrinsic combinatorial constants that might be related to the intersection theory of some analogues of the moduli space of curves. The structure of these conjectural “intersection numbers” is discussed in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit formulae for one-part double Hurwitz numbers with completed 3-cycles

Weprove twoexplicit formulae for one-part doubleHurwitz numberswith completed 3-cycles. We define "combinatorial Hodge integrals" from these numbers in the spirit of the celebrated ELSV formula. The obtained results imply some explicit formulae and properties of the combinatorial Hodge integrals.

متن کامل

Polynomiality, wall crossings and tropical geometry of rational double Hurwitz cycles

We study rational double Hurwitz cycles, i.e. loci of marked rational stable curves admitting a map to the projective line with assigned ramification profiles over two fixed branch points. Generalizing the phenomenon observed for double Hurwitz numbers, such cycles are piecewise polynomial in the entries of the special ramification; the chambers of polynomiality and wall crossings have an expli...

متن کامل

Pruned Double Hurwitz Numbers

Hurwitz numbers count ramified genus g, degree d coverings of the projective line with fixed branch locus and fixed ramification data. Double Hurwitz numbers count such covers, where we fix two special profiles over 0 and ∞ and only simple ramification else. These objects feature interesting structural behaviour and connections to geometry. In this paper, we introduce the notion of pruned doubl...

متن کامل

Towards the Geometry of Double Hurwitz Numbers

Double Hurwitz numbers count branched covers of CP with fixed branch points, with simple branching required over all but two points 0 and∞, and the branching over 0 and∞ points specified by partitions of the degree (withm and n parts respectively). Single Hurwitz numbers (or more usually, Hurwitz numbers) have a rich structure, explored by many authors in fields as diverse as algebraic geometry...

متن کامل

Monotone Hurwitz numbers and the HCIZ Integral

We prove that the free energy of the Harish-Chandra-Itzykson-Zuber matrix model admits an N → ∞ asymptotic expansion in powers of N −2 whose coefficients are generating functions for a desymmetrized version of the double Hurwitz numbers, which we call monotone double Hurwitz numbers. Thus, the HCIZ free energy expands as a generating function enumerating certain branched covers of the Riemann s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2012